KISSA-1D Electrochemical Simulation Software

KISSA-1D©
Software for Simulation of Electrochemical Reaction Mechanisms of Any Complexity

Ordering Information
Tutorials
References

KISSA-1D© is designed for automatic simulation of electrochemical reaction mechanisms of any complexity involving any number of reactants and elementary (electro)chemical steps. This powerful program is easy to use and gives accurate results. The software protection allows multiple users (but not simultaneous) making it convenient for research and teaching laboratories.

Simulated cyclic voltammogram for EE mechanism.

Computational Results Available

  • electrochemical currents (CV, LSV, chronoamperometry, double potential step, etc.)
  • concentration distributions of all species
  • surface coverage of adsorbed species
  • intensity of electrochemiluminescence (ECL) emission
  • electrode geometries: planar, (hemi)sphere, and (hemi)cylinder

Physicochemical Models Solved

  • heterogeneous electron transfer (ET) steps
  • homogeneous chemical reactions of any order
  • kinetically controlled adsorption-desorption (Langmuir isotherm)
  • ET and reactions between species in the adsorbed state
  • reactions between adsorbed and solution species
  • reactions leading to electrochemiluminescence (ECL)
  • natural convection limiting the extent of the diffusion layer
  • system pre‐equilibration that takes into account finite duration of the pre‐equilibration period and finite reaction rates; this yields realistic and consistent initial conditions at the beginning of the voltammetric scan unlike thermodynamic pre‐equilibration throughout the solution volume as implemented in some other programs.

Program Interface

  • convenient entry of a reaction mechanism and parameters
  • graphical output of computed currents, concentration distributions, surface coverages and ECL intensity
  • export of simulation results into a file
  • import of experimental electrochemical currents for comparison with simulation
  • printing of all graphics

The Computational Strategy

  • a novel algorithm for automatic adaptation of the computational grid using a kinetic criterion for cases of fast homogeneous kinetics (and possibly travelling reaction fronts)
  • use of conformal or quasi‐conformal coordinate transforms for adequate tracking of diffusional propagation and resolution of edge effects at microelectrodes

Computer Requirements

  • Operating system of Windows XP, Vista, 7, 8, or 10 is required
  • USB port

Emergent Instruments is licensed distributor of KISSA-1D© in United States, Canada, Mexico, and Europe. More information on the developers of KISSA-1D© is at www.kissagroup.com.

KISSA-1D© is copyright of Oleksiy Klymenko, Irina Svir, and Christian Amatore.


Ordering Information

KISSA-1D© uses a USB dongle for Software protection. Licensee may install the Software on one or more computer(s) in the Licensee’s organization and designate one or more persons in the Licensee’s organization (“Named Users”) the right to use the Software. The Software will function only on the computer to which the USB protection dongle is attached.

A signed licensing agreement must be received before purchase is completed.

EC-1500 KISSA-1D© software  $3000

Academic and Multi-license discount available. Please contact us for details.


Tutorials

Quick Start

Adsorption


References

Simulation strategy

  1. Amatore, C.; Klymenko, O.; Svir, I. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Principle. Electrochem. Commun. 12, 2010, 1170-1173.
  2. Klymenko, O.V.; Oleinick, A.; Svir, I.; Amatore, C. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution under spherical or cylindrical diffusion. Russian J Electrochem. 48, 2012, 593-599.
  3. Klymenko, O.V.; Svir, I.; Oleinick, A.; Amatore, C. A novel approach to the simulation of electrochemical mechanisms involving acute reaction fronts at disk and band microelectrodes. ChemPhysChem 13, 2012, 845-859.
  4. Amatore, C.; Klymenko, O.V.; Svir, I. Importance of correct prediction of initial concentrations in voltammetric scans: Contrasting roles of thermodynamics, kinetics, and natural convection. Anal. Chem. 84, 2012, 2792-2798.
  5. Klymenko, O.V.; Svir, I.; Amatore, C. New theoretical insights into the competitive roles of electron transfers involving adsorbed and homogeneous phases. J Electroanal. Chem. 688, 2013, 320-327.
  6. Klymenko, O.V.; Svir, I.; Amatore, C. Molecular electrochemistry and electrocatalysis : a dynamic view. Molecular Physics 112, 2014, 1273-1283.
  7. Oleinick, A.; Amatore, C.; Svir, I. Efficient quasi-conformal map for simulation of diffusion at disk microelectrodes. Electrochem. Commun. 6, 2004, 588-594.
  8. Amatore, C.; Oleinick, A.; Svir, I. Construction of optimal quasi-conformal mappings for the 2D-numerical simulation of diffusion at microelectrodes. Part 1: Principle of the method and its application to the inlaid disk microelectrode. J Electroanal. Chem. 597, 2006, 69-76.

Applications

  1. Amatore, C.; Klymenko, O.; Svir, I. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Application to model mechanisms.  Electrochem. Commun. 12, 2010, 1165-1169.
  2. Klymenko, O.; Amatore, C.; Svir, I. Theoretical study of the EE reaction mechanism with comproportionation and different diffusivities of reactants.  Electrochem. Commun. 12, 2010, 1378-1382.
  3. Lorcy, D.; Guerro, M.; Bergamini, J.-F.; Hapiot, P. Vinylogous tetrathiafulvalene based podands: Complexation interferences on the molecular movements triggered by electron transfer. J. Phys. Chem. B 117, 2013, 5188-5194.
  4. Klymenko, O.V.; Buriez, O.; Labbe, E.; Zhan,D.-P.; Rondinini, S.; Tian, Z.-Q.; Svir, I.; Amatore, C. Uncovering a missing link between molecular electrochemistry and electrocatalysis: mechanism of benzyl chloride reduction at silver cathodes. ChemElectroChem 1, 2014, 227-240.
  5. Gutierrez, A.G.P.; Zeitouny, J.; Gomila, A.; Douziech, B.; Cosquer, N.; Conan, F.; Reinaud, O.; Hapiot, P.; Le Mest, Y.; Lagrost, C.; Le Poul, N. Insights into water coordination associated with the CuII/CuI electron transfer at a biomimetic Cu centre. Dalton Transactions 43, 2014, 6436-6445.
  6. Jalkh, J.; Leroux, Y. R.; Lagrost, C.; Hapiot, P. Comparative electrochemical investigations in ionic liquids and molecular solvents of a carbon surface modified by a redox monolayer. J. Phys. Chem. C 118/49, 2014, 28640-28646.
  7. He, W. Y.; Fontmorin, J.-M.; Hapiot, P.; Soutrel, I.; Floner, D.; Fourcade, F.; Amrane, A.; Geneste, F. A new bipyridyl cobalt complex for reductive dechlorination of pesticides. Electrochimica Acta 207, 2016, 313-320.
  8. Dickinson, E.J.F.; Ekström, H.; Fontes, E. COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 2014, 71-74.
  9. Speiser, B. Organic Electrochemistry, 5-th Ed., Chap. 5. “Application of Digital Simulation”, 2015, 205–227.
  10. Saveant, J.M. Molecular Electrochemistry: Recent Trends and Upcoming Challenges. ChemElectroChem 3, 2016, 1967-1977.
  11. Chen, R.; Balla, R.J.; Li, Z.; Liu, H.; Amemiya, S. Origin of Asymmetry of Paired Nanogap Voltammograms Based on Scanning Electrochemical Microscopy: Contamination Not Adsorption. Anal. Chem. 88, 2016, 8323–8331.
  12. Mulas, A., He, X., Hervault, Y.-M., Norel, L., Rigaut, S., Lagrost, C.
    Dual-Responsive Molecular Switches Based on Dithienylethene–RuII Organometallics in Self-Assembled Monolayers Operating at Low Voltage. Chemistry – A European Journal, 23, 2017, 10205-10214.
  13. Bkhach, S.; Aleveque, O.; Blanchard, P.; Gautier, C.; Levillain, E. Thienylene vinylene dimerization: from solution to self-assembled monolayer on gold. Nanoscale 10, 2018, 1613-1616.
  14. Costentin, C.; Saveant, J.-M. Homogeneous Catalysis of Electrochemical Reactions: The SteadyState and Nonsteady-State Statuses of Intermediates. ACS Catal. 8, 2018, 5286-5297.
  15. Hijazi, H.; Vacher, A.; Groni, S.; Lorcy, D.; Levillain, E.; Fave, C.; Schöllhorn, B. Electrochemically driven interfacial halogen bonding on self-assembled monolayers for anion detection. Chem. Commun. 55, 2019, 1983-1986.
  16. Lemaire, A.; Hapiot, P.; Geneste, F. FranceTi-Catalyst Biomimetic Sensor for the Detection of Nitroaromatic Pollutants. Anal. Chem. 91 (4), 2019, 2797–2804.
  17. ENCYCLOPEDIA of ANALYTICAL SCIENCE. Eds.Paul Worsfold, Colin Poole, Alan Townshend and Manuel Miro. (Edition 3) 2019. Elsevier. Voltammetry/Cyclic Voltammetry of Organic Compounds by Robert J. Forster and Loanda R. Cumba. Volume 10, pp. 197-208.

Electrochemiluminescence

  1. Klymenko, O.V.; Svir, I.; Amatore, C. A new approach for the simulation of electrochemiluminescence (ECL). ChemPhysChem 14, 2013, 2237-2250.
  2. Svir, I.; Oleinick, A.; Klymenko, O.V.; Amatore, C. Strong and unexpected effects of diffusion rates on electrochemiluminescence (ECL) generation by amine/transition metal(II) systems. ChemElectroChem 2(6), 2015, 811-818.
  3. Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence,  Soc. Rev. 44(10), 2015, 3117.
  4. Oleinick, A.; Klymenko, O.V.; Svir, I.; Amatore, C. Theoretical Insights in ECL. Chap. 7 in book “Luminescence in Electrochemistry: Applications in Analytical Chemistry, Physics and Biology”, Springer Int. Pub., 2017, p. 215-256.
  5. Daviddi, E.; Oleinick, A.; Svir, I.; Valenti, G.; Paolucci, F.; Amatore, C. Theory and simulation for optimizing electrogenerated chemiluminescence from tris(2,2′-bipyridine)-ruthenium(II)-doped silica nanoparticles and tripropylamine. ChemElectroChem 4, 2017, 1719-1730.